Proceedings of the ASME 2022

International Mechanical Engineering Congress and Exposition

IMECE2022
October 30-November 3, 2022, Columbus, OH

IMECE2022-95438

FLEXIBLE LOW-LEVEL CONTROL SOFTWARE FRAMEWORK FOR ACHIEVING CRITICAL REAL-TIME DEADLINES

Nicholas J Tremaroli':T, Maxwell A Stelmack’'", Connor W Herron':-*, Bhaben Kalita', Alexander Leonessa'

'Terrestrial Robotics Engineering and Controls (TREC) Laboratory, Virginia Tech, Blacksburg, VA 24060, USA

ABSTRACT

In this work, a low-level software framework is proposed to
simplify software development for Hardware Abstract Layered
(HAL) control systems, identify networking methods for accurate
real-time communication between devices, and verify task com-
pletion. The framework is implemented on a distributed micro-
controller system composed of Texas Instruments TM4C123GXL
Tivas for a multi-joint robot. The robot’s high-level controller
executes dynamic motion control algorithms, with low-level con-
trollers responsible for each individual joint. All microcontroller
software is unified into one program and uses initialization files
from the high-level controller to configure each individual Tiva
depending on its location on the robot. The EtherCAT commu-
nication protocol is utilized to avoid unnecessary overhead from
traditional networking protocols. A real-time operating system,
TI-RTOS, enforces crucial deadlines and provides powerful diag-
nostic tools for the designer to optimize task completion. Overall,
our proposed framework overcomes the major challenges of writ-
ing low-level control software so that development is less time-
consuming, simpler to manage, and easier to validate. Further,
this work can be used for many kinds of robotic systems and appli-
cations that use microcontrollers within a multi-layered control
architecture.

Keywords: Software Framework, Networking, Microcon-
troller, Control System, Communication, Operating System

1. INTRODUCTION

Complex robotic systems are becoming more flexible by uti-
lizing distributed control approaches which separate high and
low-level controllers into different pieces of hardware, thus al-
lowing faster execution rates for high-speed control. For multi-
joint robotic systems such as manipulators, exoskeletons, and
humanoid robots, microcontrollers are often paired with robot
joints to handle sensor collection and actuation, allowing for per-
sistent software at the low-level [1-4]. These distributed control

T Joint first authors
*Corresponding author: cwh@vt.edu

systems are scalable and allow for increased controller speeds and
microcontroller software unification, but require timing guaran-
tees from i) low-level processor capability and ii) networking for
high-performing, robust robot control. Xi et al. [5] discussed
the importance of using a Real-Time Operating System (RTOS)
in the low-level system, emphasizing that distributed control sys-
tems must properly evaluate task completion for effective perfor-
mance. Cui and Park [6] argued that achieving complex dynamic
behavior for robots is throttled by the lack of in-robot network
(IRN) architectures to ensure reliable data transmission across all
sensors and actuators, where the most popular networking meth-
ods for robotic systems are the CAN and EtherCAT protocols.
These networking methods have been utilized in applications
such as an autonomous underwater robot [7], a wheeled soccer
robot [8], a humanoid robot [9], a multi-axis robot arm [10], and
a collaborative manipulator [5].

In this work, a low-level software framework is proposed
for multi-joint robotic systems utilizing RTOS and the Ether-
CAT networking protocol and is designed to meet the specific
challenges of a robotic system. Low-level controllers are often
implemented using single-threaded microcontrollers, only capa-
ble of executing a single task at one time. Microcontrollers
are inherently opaque, and their internal states cannot be easily
observed during runtime. Traditional networking strategies be-
tween microcontrollers and high-level processors are inefficient
due to unnecessary overhead procedures [11]. Hardware Abstract
Layered (HAL) programming differs between microcontrollers,
making it tedious and time-consuming to transition between plat-
forms. Multi-layer controlled robotic systems require a low-level
framework with timing guarantees for network communication
and task execution to ensure good performance and safe action
[6]. The developed framework for this research, addresses each
of these challenges and constraints.

The paper is organized as follows: Section II describes the
code unification, networking, and operating system within the
proposed Low-Level Software framework, Section III details the
results which verify networking efficacy and low-level processor
capability, and Section IV is the Conclusion.

Copyright © 2022 by ASME

High-Level Controller Initialization

Send Initialization Data

Localization p N\ ~
Joi Pal.-se j.SON Jointl Data to MCU A | (Joint2 Data to MCU B | | Joint3 Data to MCU C
ointl -> MCU A Jomt]_]son i o | o . o
Joint2 -> MCU B > L e » Joint Llr.nlt.s Joint Llr.mt-s Joint Llr.mt.s
Joint3 -> MCU C Joint3.json Tm:que L|m\.ts Tor.que LIrT‘II:tS Torque LImI.tS
I Peripheral Pins Peripheral Pins) Peripheral Pins
H L I =
H Master Location Poll -> <- MCU Location B ; f— J I:
i ' W | I
1 S Joint 1 i 1
1 Low-Level 1 1
I MCU A - I :
| el o
L esten ol > | Moy Locatin s : N !
1 h ks Low-Level :
: e 4 MCU B 1
e . = 1
H TIVA MCU Joint 2 I
1 -
1 Low-Level g— _
: Mc b PR) :
Master Location Poll > < MCU Lecation C 3 TIVA MCU
Lopminz | oo - |
| Joint 3
TIVA MC oW

FIGURE 1: INITIALIZATION PROCESS

2. SOFTWARE FRAMEWORK

The low-level software framework is developed for the
TM4C123GXL TIVA Launchpad as shown in Fig. 1. The TIVA
microcontroller is an 80 MHz ARM Processor with embedded
communication interfaces such as 12C, UART, CAN, and SSI,
along with I/O modules such as GPIO, Timers, PWM, QEI, and
ADCs [12]. These modules are utilized for collecting sensors
feedback, directing actuator commands, and networking with the
high-level controller. The proposed framework leverages several
techniques to solve issues related to low-level software devel-
opment on microcontrollers. Subsection I provides a low-level
initialization procedure to unify behavior across distributed mi-
crocontrollers. Subsection II explains the EtherCAT networking
implementations developed for each mode of microcontroller op-
eration. Subsection III describes a real-time operating system im-
plemented for the code of the low-level controller to provide better
timing guarantees. Subsection IV lists the steps for implementing
low-level controller software within the proposed framework.

2.1 Low-Level Initialization

In a distributed robotic control system, each low-level micro-
controller is responsible for a particular joint as shown in Fig. 1.
A microcontroller (MCU) requires different software depending
on the assigned joint’s sensor configuration and desired func-
tionality. To avoid writing multiple programs with each joint’s
parameters hard-coded, an initialization process is used to unify
the code of the distributed controllers.

Identical code is flashed to MCUs A, B, and C, with the
high-level computer sending an initialization file to each micro-

controller with its joint-specific parameters. This file includes en-
abled peripherals, sensor calibration values, and joint and torque
limits. Simply from editing the initialization file, the software
behavior of individual MCU-joint pairs can be altered without
re-deploying code to the low-level device.

The high-level computer stores all of these initialization files
in a JSON format. Before the sending an initialization file to a
microcontroller, the high-level computer must know the associ-
ated joint. Before initialization, the high-level computer queries
all low-level device locations. Once each microcontroller’s joint
is identified, the respective JSON initialization file is parsed and
sent by the high-level computer.

A microcontroller stores each initialization frame from the
high-level in a dynamically allocated array which is only used for
this purpose. Once all initialization data from the high-level is
received by the low-level, the dynamically allocated data struc-
ture is parsed and the peripherals on the microcontroller are made
ready for operation. After initialization completes, the dynami-
cally allocated initialization array is deallocated from memory to
save space.

2.2 Networking

Traditional Ethernet-based networking protocols for a dis-
tributed microcontroller system tend to cause inefficiencies and
unnecessary delays. These delays are caused by the nature of
Ethernet-based routing protocols such as IP and ARP. These tra-
ditional protocols are much better suited for a dynamic network
in which the state of the devices on the network can change.
However, control-automated technologies such as robotics have

Copyright © 2022 by ASME

Step 1) Step 2) Step 3) Step 4)

Master | Master I Master Master

Tiva ‘ Tiva ‘ Tiva ‘ Tiva ‘
#~ Processing ™ i." Waiting for ™ " Processing ™

_ MPD1 . _MPID2 /' MPID2

S

(a) Tight-chaining implementation

_ MPID1 /

Step 1) Step 2) Step 3) Step 4)
{ Master | Master ‘ Master | Master
Tiva | Tiva | | Tiva | Tiva .
i LA i L A i LA . Y
/ Processing Y, / Processing /" Processing Processing ™,
_ MPID1 / _ MPID2 /

MPID2

o

(b) Loose-chaining implementation

FIGURE 2: NETWORKING METHODS UTILIZED FOR HIGH AND LOW-LEVEL COMMUNICATION.

static networks, where connected devices are not changing during
runtime. Therefore, network flexibility protocols are not needed
and cause unnecessary slowdown.

The EtherCAT protocol is designed for this very reason.
EtherCAT uses a much more minimalistic approach to network-
ing which does not have as much overhead. By using EtherCAT,
the unnecessary protocols which stem from traditional network-
ing are avoided and thus the communication loop is able to run
faster [11]. This speed gained from using the EtherCAT protocol
can be crucial when designing systems which require fast update
rates. The EtherCAT network topology is significantly different
from that of Ethernet. For Ethernet, all of the data for each device
is routed through a central hub such as a switch, with the switch
connected to each of the individual slaves. EtherCAT by default
uses a ring topology, in which all of the slaves are connected to
each other and then back to the master. From this configuration,
the master can send out a single data frame to send and receive
updated values from each of the low-level controllers instead of
sending out multiple requests, as in a traditional Ethernet network.
The authors’ implementation uses the EasyCAT Pro as an Ether-
CAT shield. Each microcontroller has an attached EasyCAT Pro
to send data back to the master as part of the ring topology chain.
The EasyCAT Pro uses the LAN9252 EtherCAT slave controller
chip [13]. A custom driver is written to communicate with this
chip over SPI to the TIVA. The EasyCATs are configured to re-
ceive and send 32 bytes of data per communication loop. These
32 bytes of data are programmed to be serialized differently de-
pending on which command signal the master is sending, which
are specified below:

e HALT: Triggers the low-level controller’s emergency-stop
and turns motors off.

¢ LOCATION DEBUG: Queries the Low-Level Controller’s
location on the robot.

¢ CONTROL: Commands the Low-Level Controllers to
move to a desired location. The Low-Level Controllers then
sends the master the most updated sensor values.

* IDLE: Puts the Low-Level Controllers in standby.

¢ INITIALIZATION: Sends initialization data the micro-
controller needs before it can start.

The EtherCAT communication loop, in general, can run
as fast as the master computer (high-level controller) would
like. However, if the master runs the communication loop faster
than the microcontrollers can process, frames will be skipped.
Thus, two different EtherCAT implementations were developed
as shown in Fig. 2, where each implementation has its own respec-
tive benefit for certain master commands. For initialization-based
command signals, the "tight-chaining" implementation is utilized
to guarantee two-way communication without loss of data. For
processing control signals, the "loose-chaining" implementation
is utilized to achieve faster speeds at the expense of occasional
frame drops.

2.2.1 Tight-Chaining Implementation For Initialization.
As for initialization, since every single frame is important, skip-
ping a frame is catastrophic. Each frame the master computer
sends out has an ID which the low-level device must echo back
before the master sends the next frame. This ID number is called
the master process ID (MPID).

From the microcontroller’s perspective, if the MPID is an
updated value, the EtherCAT frame contains new, unprocessed
data which must be interpreted. If the MPID is the same as one
in a previously processed frame, then the microcontroller ignores
the frame and waits for an updated MPID. From the master’s
perspective, the master computer sends out initialization data
with a particular MPID. The master computer then waits for the
microcontroller to echo back the same MPID before it can send
out another initialization frame.

This implementation of "tight-chaining" forces the master
computer to wait for the microcontroller to complete processing
before sending out another initialization frame. A demonstration
of tight-chaining can be seen in Fig. 2a, in which the master sends
out MPID:1 and waits for the microcontroller to process and echo
back before sending MPID:2.

2.2.2 Loose-Chaining Implementation For Control.
While a tight-chaining implementation may be good for ini-
tialization purposes by preventing missed frames, it is not the
ideal implementation for sending control signals. Tight-chaining
enforces that the master wait for the microcontroller’s message
before another frame is sent out. However, the microcontroller
immediately accepts a new message after echoing the previous
MPID. In a tight-chaining implementation, this new message
will have the same MPID because the master has not sent out

Copyright © 2022 by ASME

m
<
o©
=]
—*
w

[72] [%2] 1] 7]
T m £ 7] 2 g g g g
S 3 B 3 k] @] @
g3 8 8 8§ & & & &
2) o~ o <€ — — o~ < m
Q [72] = S e = = = = =
g £ £ £ £ 2 & 3
Thread Priority
AHardware interrupt 1]
(Hwi 1) W
= Hardwareinterruptz preempted
5 (Hwi 2) A
&
2| Software interrupt A Swi A read
E (Swi A) wi A ready
g
O .
£ | Software interrupt B -
(Swi B) Swi B preempted
Backgraglr;c; background preempted

Time —————————»

FIGURE 3: TASK PREEMPTION TI-RTOS [14]

a new frame, as the echo it is waiting on is still traveling to
it. The end result in a tight-chaining implementation is that
the microcontroller and master both wait on each other, which
increases latency.

The alternate approach is loose-chaining. In this imple-
mentation, the master sends the first frame with an MPID and
then immediately follows with a second with a different MPID.
The microcontroller processes the first message from the master.
When the Tiva echos to the master, it is able to pull the second
frame with an updated MPID and begin processing that request.
Once the master receives the first MPID from the Tiva, a third
frame is sent out from the master with an updated MPID and the
cycle continues. In this implementation, the master is always one
step ahead of the Tiva and frames can be processed faster as the
Tiva is not waiting on the master.

Once MPID:1 is received by the master, the Tiva begins
MPID:2 and the master sends out MPID:3. It is important to note
the key differences between the tight-chaining and loose-chaining
implementations. Tight-chaining enforces that each frame sent
by the master is read by the Tiva, making communication slower.
During initialization, this approach ensures that each Tiva is fully
set up prior to run time. Loose-chaining is faster but is subject to
rare frame drops from either the master or the Tiva depending on
their update rates. These frame drops happen infrequently and
have negligible impact on the system when sending control signal
frames.

2.3 Real-Time Operating System (RTOS)

The computational function of a microcontroller can often
be broken down into discrete and repeatable segments. In a
robotic system, this may take the form of acquiring sensor data,
computing mathematical formulas, commanding actuators, and
transferring data. A common practice in microcontroller de-
velopment is to denote each routine functionality as a "task".

Many different properties of a task can be described, but the most
important are worst-case execution time, period, and deadline.
Many microcontrollers do not make use of multiple processors,
restricting execution to one task at a time. Choosing which task
to run at a particular moment can have an immense effect on sys-
tem stability (imagine a processor so backlogged by tasks that it
cannot command actuators). Efficiently completing tasks before
their deadline is the purpose of using a real-time operating system
(RTOS).

A microcontroller usually does not feature an operating sys-
tem. An operating system induces additional computing over-
head without much benefit for a typical microcontroller applica-
tion. Traditionally, routine tasks of a microcontroller are handled
through an Interrupt Service Routine (ISR). The approach is to
set up a timer for each task aligned with its period, and when that
timer expires the task is considered "ready-to-run". When the
currently running task completes, the next ready-to-run task with
the highest priority executes. Tasks of the same priority run on a
FIFO (First-In-First-Out) basis.

There are several issues with an ISR. Once a task begins,
it cannot be interrupted. This means a lengthy low-priority task
can delay a critical high-priority task. An ISR is not aware of
task deadlines and cannot guarantee their satisfaction. On the
other hand, a real-time operating system implements a scheduler
that manages execution of tasks. A scheduler can use a variety
of algorithms to decide which tasks run. A scheduler can force
preemption, where a high priority tasks temporarily takes exe-
cution time from a lower priority tasks (Fig. 3), often to meet
the higher-priority deadline. This allows deadlines to be better
enforced for high priority tasks. Tasks of greater importance to
robot functioning can be given higher priority to better guarantee
their timely completion and a stable system.

Since our implementation of the framework resides on a

Copyright © 2022 by ASME

Tiva Master

~| Receive Control Signal |-u- Send Control Signal |

l Deseﬂdhe(;mdsw]

Iﬂpplymm;calm‘
[

Y
[Apply values to actuators

| F!ea.ddalal:omsams l

hJ
- l Send data to master } I

. --’ Receive data from Tiva ‘

Y
Process data from Tiva ‘

FIGURE 4: CONTROL SIGNAL STEPS

Texas Instruments microcontroller, TI-RTOS is used. This has
the additional benefit of providing logging tools for in-depth per-
formance analysis. Through tools like Utilization Analysis and
Execution Analysis, the exact processor load and task execution
are made visible for validation. TI-RTOS also supplies a HAL
for various low-level functionalities, as well as its own configu-
ration. Since a microcontroller has a limited memory size, the
TI-RTOS can be configured to disable unneeded features to save
space. To govern what aspects of the RTOS are included, a con-
figuration script is added to the software project that builds the
operation system to specification. While the configuration file
can be edited directly, a GUI can be used to customize most fea-
tures. The GUI also guides the user through configuration of each
module’s parameters (logging buffer size, task instance creation,
etc).

2.4 Low-Level Controller Process

The control loop begins running when the high-level sends a
CONTROL signal. Once a microcontroller enters a control state,
its functionality can be broken down in repetitive discrete steps
which are essential for normal operation. Reading data from mas-
ter is the first step of the control loop. For this step, the Tivas must
extract the raw EtherCAT frame data from the EasyCAT board
and then deserialize the data so that it can be interpreted further.
After the data is deserialized, the Tiva must apply mathematical
formulas relating to calibration and orientation. Once the data
is processed, the Tiva applies the values to its assigned actuator
to achieve a desired force. The final step is to read the values
from each of the sensors, serialize the data, and send it back to
the master. This allows the master to process the changes on the
robot as they are happening in real-time. Each of the individual
responsibilities of the microcontroller is implemented as a task
within the real-time operating system. These tasks are assigned
a priority based on their criticality to the system.

=-chaining 1mplementation

FIGURE 6: TIGHT-CHAINING RESULTS

3. RESULTS AND DISCUSSION

This section provides analyses of the authors’ implementa-
tion of the framework components outlined in Section II. Results
are shown which validate the networking methods of loose and
tight-chaining and further demonstrate their efficacy for different
operation scenarios. The RTOS Execution Analysis tool is uti-
lized to present for managing microcontroller tasks. An example
with encoder and controller tasks outlines the functionality of
RTOS for validation of timing constraints.

3.1 Networking Implementation

The networking implementations used throughout this
framework maximized efficiency when communicating with the
low-level controllers. The use of EtherCAT and the various Ether-
CAT implementations reveal idle methods of communication per
each command the master wanted to send to the low-level con-
trollers. With the incorporation of EtherCAT and the various
implementations described, the control loop of the system is able
to be run successfully at 1KHz with minimal frame drops dur-
ing a control signal. From the tight-chaining implementation,
the Tivas have never had a fault related to initialization and are
always able to fully processes every frame the master sends out.
The loose-chaining implementation increases the update rate of
the EtherCAT loop for control signals. These implementations
are tested using a program designed specifically to identify frame
drops in the EtherCAT communication network. The output of
this program can be seen in Fig. 5 and Fig. 6 for loose-chaining
and tight-chaining, respectively.

By preemptively sending one frame ahead of a Tiva’s pro-
cessing capabilities, we are able to maximize the processing out-
put of the microcontroller and achieve faster update rates. Itis also
observed that the frame drops on the EtherCAT network which
occurs from the loose-chaining implementation only once, every
1.5 seconds. This occurrence is deemed to be negligible for our
purposes, as the update rate is significantly higher to compensate
for occasional frame drops.

3.2 TI-RTOS Timing Evaluation

To evaluate the effects of an RTOS implementation on the
timing of critical tasks, the Execution Analysis Tool inside of
TI-RTOS’s debugging mode is used to collect data and generate
graphs. A bar is drawn in the row of the executed process for a
particular time and is color-coded. The execution graph seen in
Fig. 9 is zoomed in on a single tick of the kernel clock.

Copyright © 2022 by ASME

“ mCORTEX_M4_0#Hwi b

#CORTEX_M4_0.#Swi b

- CORTEX_M4_0+05
#Hwi.ti_sysbios_family_arm_Im4_Timer_isr§ |
#Swi.controller()

source

#Swi.encoder()
#Swi.ti_sysbios_knl_Clock_workFunc__EQ I
Task.ti_sysbios_knl_ldle_loop_ E()@ 200055 m—

{BIOS Scheduler}

I | I
1 | 1
.| |
T L L L L L L L L R L L L L L R L L EL L L L L L L
2 3 4
Time (ms)

FIGURE 7: PSEUDO-ISR EXECUTION

+CORTEX_M4_0#Hwi 1

#CORTEX_M4_0#Swi P

2 CORTEX_M4_0.#0S
#Hwi.ti_sysbios_family_arm_Im4_Timer_isrj |
#Swi.controller()

source

#Swi.encoder()
#Swi.ti_sysbios_knl_Clock workFunc__E() I
Task.ti_sysbios_knl_ldle_loop_EQ@ 200052 m—

{BIOS Scheduler}

AF I Ar]] AF T

I | E— |
1 | 1
—— —
T L L L
1 2 3 4
Time (ms)

FIGURE 8: TI-RTOS PRIORITIZATION OF MULTIPLE TASKS

The "clock tick" is a periodic software function (in this case
the period is 500 ps) that is the base unit for all timing. Every
task’s period is expressed in ticks rather than continuous time
units. Figure 9 depicts the system being in the idle function (red)
leading up to the tick, the tick counter incrementing (green), the
scheduler dictating which process runs next (lower blue), the
callback functions for expired timers executing (upper blue), and
a return to the idle state after callbacks are resolved (red). This
routine set of functionality occurs quickly in comparison to other
tasks that it will be scaled to a single vertical bar in other graphs.

An example task set demonstrates the effects of RTOS are
summarized in Table 1. These tasks are not representative of
our system performance and are exaggerated to make effects on
timing more apparent. The controller task represents a low-level

#CORTEX_M4_0.#Hwi [1

#CORTEX_M4_0.#Swi o

- CORTEX_M4_0.+05
#Hwi.ti_sysbios_family_arm_Im4_Timer_isr’ —
#Swi.controller()

source

#Swi.encoder()
#5wi.ti_sysbios_knl_Clock_workFunc_E() -
Task.ti_sysbios_knl_ldle_loop_ EQ@ 200052 m—

{BIOS Scheduler} -

T T
1,230 1,280
Time (us)

FIGURE 9: TI-RTOS PRIORITIZATION AND PREEMPTION

controller algorithm implemented on the system. The encoder
represents the processing required to obtain a value from a single
sensor where there would be several sensors to be measured for a
robot joint.

In Fig. 7, the controller task is color-coded yellow, and the
encoder task is shown as magenta. The two tasks are set to
the same priority, replicating ISR execution where tasks cannot
preempt each other. At the first tick (1.4 ms), the controller is run
successfully to completion. At the second tick, the controller and
encoder are both posted. The controller runs to completion and
the scheduler calls the encoder task next. Due to this task’s long
execution time, it has not finished before the third tick. The third
tick makes the controller ready to run, but the scheduler waits
for the encoder task to run to completion before executing the
controller. This pattern repeats itself, with the controller running
at an inconsistent timestep.

On the other hand, Fig. 8 depicts a controller task with a
higher priority than the encoder task. This allows the controller
to preempt the encoder task after the third tick to maintain a
far more consistent timestep. Thus, consistent timing can occur
with far greater surety in a real-time environment where tasks

TABLE 1: EXAMPLE TASK SET

Task Avg. Execution Time [ps] Period [ticks]
Controller 143 1
Encoder 1223

Copyright © 2022 by ASME

can be prioritized by criticality. Furthermore, advanced logging
tools provide greater insight into actual system performance and
enhance empirical verification of timing constraints.

4. CONCLUSION

This research proposed a software framework to surmount
difficulties commonly faced by developers of low-level con-
trollers. Combining robust initialization procedures for dis-
tributed microcontrollers, efficient protocols for static networks,
and a real-time operating system for superior timing guarantees,
this approach overcomes various challenges unique to microcon-
troller programming. The low-level software framework can be
utilized for many kinds of multi-joint robotic systems. Further-
more, this work can be extended to multi-agent systems contain-
ing several robots with more complicated leadership hierarchies
where there may be many high-level controllers.

REFERENCES

[1] Hopkins, Michael A, Hong, Dennis W and Leonessa,
Alexander. “Humanoid locomotion on uneven terrain using
the time-varying divergent component of motion.” 2014
ieee-ras international conference on humanoid robots: pp.
266-272.2014. IEEE.

[2] Sakagami, Yoshiaki, Watanabe, Ryujin, Aoyama, Chiaki,
Matsunaga, Shinichi, Higaki, Nobuo and Fujimura, Kikuo.
“The intelligent ASIMO: System overview and integration.”
IEEE/RSJ international conference on intelligent robots and
systems, Vol. 3: pp. 2478-2483. 2002. IEEE.

[3] Infante, Y. Y., Blanco, A. E. and Jonguitud, A. E. “The
exoskeleton: Operation with electrostimulators for reha-
bilitation.” 2019 IEEE International Conference on En-
gineering Veracruz (ICEV), Vol. I. pp. 1-4. 2019. DOI
10.1109/ICEV.2019.8920521.

[4] Yang, Yong, Ma, Lei and Huang, Deqing. “Development
and Repetitive Learning Control of Lower Limb Exoskele-
ton Driven by Electrohydraulic Actuators.” IEEE Transac-
tions on Industrial Electronics Vol. 64 No. 5 (2017): pp.
4169-4178. DOI 10.1109/TIE.2016.2622665.

[5] Xi, Qiang., Zheng, Chang W., Yao, Mao Y., Kou, Wei.
and Kuang, Shao L. “Design of a Real-time Robot Control
System oriented for Human-Robot Cooperation.” 2021 In-
ternational Conference on Artificial Intelligence and Elec-
tromechanical Automation (AIEA): pp. 23-29. 2021. DOI
10.1109/AIEA53260.2021.00013.

[6] Cui, Chengyu and Park, Sungkwon. “In-Robot Network
Architectures for Humanoid Robots With Human Sensor

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

and Motor Functions.” [EEE Access Vol. 9 (2021): pp.
89325-89335. DOI 10.1109/ACCESS.2021.3082143.

Li, He, Yin, Bo, Wang, Shanshan and Yang, Qing-
shu. “Design of underwater robot controller based on
CAN bus.” Proceedings of 2011 International Confer-
ence on Electronic Mechanical Engineering and Infor-
mation Technology, Vol. 9: pp. 4906—4909. 2011. DOI
10.1109/EMEIT.2011.6024063.

Darmaji, Darmaji, Wibowo, Iwan Kurnianto, Ardilla, Fer-
nando and Ibadurrohman, Dliyauddin. “Hardware Architec-
ture For Robot Soccer ERSOW Using Control Area Network
Bus.” 2019 International Electronics Symposium (IES): pp.
464-468.2019. DOI 10.1109/ELECSYM.2019.8901662.

Ressler, Stephen. “Design and Implementation of a Dual
Axis Motor Controller for Parallel and Serial Series Elastic
Actuators.” BS Thesis, Virginia Polytechnic Institute and
State University, Blacksburg, VA. 2014.

Li, Xiang, Ma, Xudong and Song, Wenbin. “Multi-
tasking Syetem Design for Multi-axis Synchronous Control
of Robot Based on RTOS.” 2020 15th IEEE Conference on
Industrial Electronics and Applications (ICIEA): pp. 356—
360. 2020. DOI 10.1109/ICIEA48937.2020.9248319.

Beckhoff. “EtherCAT - the Ethernet Fieldbus.” Beckhoff
Automation, Verl, Germany (1980). Accessed April 22,
2022, URL https://www.beckhoff.com/en-us/products/i-o/
ethercat/.

Texas Instruments, Austin, TX. Tiva TM4CI123GH6PM
Microcontroller Data Sheet, Release Rev V (2014). URL
https://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf.

“EBasyCAT PRO.” AB&T, Ivrea, Italy (2014). Ac-
cessed April 22, 2022, URL https://www.bausano.net/en/
hardware/easycat-pro.html.

Texas Instruments, Cary, NC. TI-RTOS Kernel (SYS/BIOS)
User’s Guide, Release Rev V (2020). URL https://www.ti.
com/lit/spruex3.

Voss, Wilfried. “A Brief Introduction to Controller
Area Network.” Copperhill Technologies (2022). Ac-
cessed April 22, 2022, URL https://copperhilltech.com/
a-brief-introduction-to-controller-area-network/.

“CANopen or EtherCAT: Discover All Features of ESA
EDWU Drive.” Esa Automation (2019). Accessed
April 22, 2022, URL https://www.esa-automation.com/en/

canopen-or-ethercat-discover-all-features- of-esa-edwu-drive/.

Copyright © 2022 by ASME

https://doi.org/10.1109/ICEV.2019.8920521
https://doi.org/10.1109/TIE.2016.2622665
https://doi.org/10.1109/AIEA53260.2021.00013
https://doi.org/10.1109/ACCESS.2021.3082143
https://doi.org/10.1109/EMEIT.2011.6024063
https://doi.org/10.1109/ELECSYM.2019.8901662
https://doi.org/10.1109/ICIEA48937.2020.9248319
https://www.beckhoff.com/en-us/products/i-o/ethercat/
https://www.beckhoff.com/en-us/products/i-o/ethercat/
https://www.ti.com/lit/ds/symlink/tm4c123gh6pm.pdf
https://www.bausano.net/en/hardware/easycat-pro.html
https://www.bausano.net/en/hardware/easycat-pro.html
https://www.ti.com/lit/spruex3
https://www.ti.com/lit/spruex3
https://copperhilltech.com/a-brief-introduction-to-controller-area-network/
https://copperhilltech.com/a-brief-introduction-to-controller-area-network/
https://www.esa-automation.com/en/canopen-or-ethercat-discover-all-features-of-esa-edwu-drive/
https://www.esa-automation.com/en/canopen-or-ethercat-discover-all-features-of-esa-edwu-drive/

	Abstract
	1 Introduction
	2 Software Framework
	2.1 Low-Level Initialization
	2.2 Networking
	2.2.1 Tight-Chaining Implementation For Initialization
	2.2.2 Loose-Chaining Implementation For Control

	2.3 Real-Time Operating System (RTOS)
	2.4 Low-Level Controller Process

	3 Results and Discussion
	3.1 Networking Implementation
	3.2 TI-RTOS Timing Evaluation

	4 Conclusion
	References

